Finite-size effects on the quasistatic displacement pulse in a solid specimen with quadratic nonlinearity.

نویسندگان

  • Peter B Nagy
  • Jianmin Qu
  • Laurence J Jacobs
چکیده

There is an unresolved debate in the scientific community about the shape of the quasistatic displacement pulse produced by nonlinear acoustic wave propagation in an elastic solid with quadratic nonlinearity. Early analytical and experimental studies suggested that the quasistatic pulse exhibits a right-triangular shape with the peak displacement of the leading edge being proportional to the length of the tone burst. In contrast, more recent theoretical, analytical, numerical, and experimental studies suggested that the quasistatic displacement pulse has a flat-top shape where the peak displacement is proportional to the propagation distance. This study presents rigorous mathematical analyses and numerical simulations of the quasistatic displacement pulse. In the case of semi-infinite solids, it is confirmed that the time-domain shape of the quasistatic pulse generated by a longitudinal plane wave is not a right-angle triangle. In the case of finite-size solids, the finite axial dimension of the specimen cannot simply be modeled with a linear reflection coefficient that neglects the nonlinear interaction between the combined incident and reflected fields. More profoundly, the quasistatic pulse generated by a transducer of finite aperture suffers more severe divergence than both the fundamental and second order harmonic pulses generated by the same transducer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulse propagation in an elastic medium with quadratic nonlinearity (L).

This letter examines the propagation of an acoustic pulse in an elastic medium with weak quadratic nonlinearity. Both a displacement pulse and a stress pulse of arbitrary shapes are used to generate the wave motion in the solid. By obtaining the explicit solutions for arbitrary pulse shapes, it is shown that for a sinusoidal tone-burst, in addition to a second order harmonic field, a radiation ...

متن کامل

A New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation

In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

Analysis of Laminated Soft Core Sandwich Plate Having Interfacial Imperfections by an Efficient C0 FE Model

An efficient C0 continuous two dimensional (2D) finite element (FE) model is developed based on a refined higher order shear deformation theory (RHSDT) for the static analysis of soft core sandwich plate having imperfections at the layer interfaces. In this (RHSDT) theory, the in-plane displacement field for the face sheets and the core is obtained by superposing a globally varying cubic displa...

متن کامل

Dynamics of nonlinear rectangular plates subjected to an orbiting mass based on shear deformation plate theory

In this paper, transverse and longitudinal vibration of nonlinear plate under exciting of orbiting mass is considered based on first-order shear deformation theory. The nonlinear governing equation of motion are discretized by the finite element method in combination with Newmark’s time integration scheme under von Karman strain-displacement assumptions. For validation of method and formulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 134 3  شماره 

صفحات  -

تاریخ انتشار 2013